OLYTECH Peter the Great St. Petersburg Polytechnic University #### **Motivation** - ☐ **Jet-quenching** (energy loss of high-energy partons) one of the evidences of sQGP formation in central heavy-ion collisions - ☐ Jet quenching results in suppressed production of leading hadrons from fragmentation of hard partons - ☐ Studied by measuring nuclear modification factors: $$R_{\scriptscriptstyle AA} = rac{1}{N_{\scriptscriptstyle coll}} \cdot rac{dN_{\scriptscriptstyle AA}/dp_{\scriptscriptstyle T}}{dN_{\scriptscriptstyle pp}/dp_{\scriptscriptstyle T}}$$ - □ Leading hadrons are used as proxy for jets: - \Box π^0 meson: - ✓ copiously produced \rightarrow measurable at high p_T - **η** meson: - ✓ hidden strangeness → hadron suppression as a function of flavor and mass #### **Motivation** - ☐ Studying **different** heavy-ion collision systems: - ✓ dependence of parton energy loss on energy density and nuclei overlap geometry → better discrimination between various theoretical models and understanding of parton energy loss mechanisms #### ☐ Available A+A collisions at RHIC: | A+A | Au+Au | Cu+Cu | Cu+Au | U+U | |------------------------|---|-----------------|-------|-----| | √s _{NN} , GeV | 7.7, 9.2, 14.6, 19.2, 19.6,
27, 39, 62.4, 130, 200 | 22.4, 62.4, 200 | 200 | 193 | - ✓ first asymmetric heavy-ion collision system - ✓ different overlap geometry compared to symmetric systems - ✓ the largest heavy ion collision system - ✓ the largest energy density in central collisions Analysis is progressing, not finished yet #### **Outline** - ☐ PHENIX detector - ☐ Neutral pion and eta meson reconstruction - \Box p_T spectra and R_{AA} in Cu+Au - ☐ Comparison with jet results in Cu+Au - ☐ Comparison with symmetric systems #### **PHENIX Detector** - Beam-Beam Counters: vertex and centrality classifications - ☐ Electromagnetic Calorimeter (PbSc/PbGl): - \checkmark reconstruction of γ-clusters from π^0 →γγ and η→γγ decays - ✓ energy resolution: **PbSc** $\delta E/E=2.1\% \oplus 8.1\%/\sqrt{E}$, **PbGl** $\delta E/E=0.8\% \oplus 5.9\%/\sqrt{E}$ - ✓ online trigger for events with high- p_T clusters → larger sampled statistics ## **Analysis info** - \square π^0 and η are reconstructed by combining pairs of γ clusters in the EMCal - Combinatorial BG is estimated using mixed-event technique and subtracted - \blacksquare π^0 peak is better pronounced because of: - ✓ higher production rate and reconstruction efficiency - ✓ larger branching: BR($\pi^0 \rightarrow \gamma \gamma$) = 0.998, BR($\eta \rightarrow \gamma \gamma$) = 0.39 - ✓ smaller width: $\sigma(\pi^0) \sim 10 \text{ MeV/c}^2$, $\sigma(\eta) \sim 30 \text{ MeV/c}^2$ # **Analysis info** - □ Reconstruction efficiency → correction for detector effects and acceptance - \square π^0 meson: - ✓ reliably identified with good S/B ratio → relatively small uncertainties - ✓ cluster merging in PbSc at high p_T - **η** meson: - ✓ does not suffer from cluster merging effect → well controlled systematic uncertainty at high p_T - Measurements are carried out separately in PbSc and PbGl → comparison of results is an important cross check - ☐ Final results are averaging of PbSc and PbGl spectra with weights defined by uncorrelated stat. and syst. uncertainties # π⁰ spectra in Cu+Au ■Measured in a wide p_T range: up to 20 GeV/c in central collisions and semi-central collisions, and up to 16 GeV/c in peripheral ### η spectra in Cu+Au ☐ Measured up to 20 GeV/c in MinBias, 18 GeV/c in central and semi-central collisions, and up to 12 GeV/c in peripheral ## η/π⁰ ratios in Cu+Au PHENIX [Phys.Rev. C75, 024909 (2007)] CCRS [Phys. Lett. B 55, 232 (1975)] # π^0 and η R_{AA} in Cu+Au: centrality dependence - □ R_{AA} **for** π⁰ and η show good agreement, similar to that in Au+Au - In **central** and **semi-central** Cu+Au collisions π⁰ and η production is suppressed - ☐ In **peripheral** Cu+Au collisions observe a hint of enhancement # Comparison with jets R_{AA} in Cu+Au \square π^0 , η and jets show similar centrality dependence of R_{AA} #### π^0 R_{AA} in Cu+Au, Au+Au and Cu+Cu Phys. Rev. Lett. 101, 232301 Phys. Rev. Lett. 101, 162301 - \Box In **central** and **semi-central Cu+Au** collisions π^0 yields are suppressed as in **Cu+Cu** and **Au+Au** at similar N_{part}: - \checkmark π^0 production depends on the size of the nuclear overlap, but not on it's shape - \Box In **peripheral Cu+Au** collisions π^0 yields show a hint on enhancement while in Au+Au suppression, Cu+Cu is in between | <t<sub>ab></t<sub> | central | semi-central | peripheral | |-----------------------|---------|--------------|------------| | Au+Au | 8.9±0.7 | 2.9±0.3 | 0.12±0.03 | | Cu+Cu | - | 4.4±0.4 | 0.12±0.02 | | Cu+Au | 8.9±0.6 | 3.1±0.2 | 0.18±0.04 | #### η R_{ΔΔ} in Cu+Au and Au+Au \Box At high p_T production of η in Cu+Au is suppressed in the same way as in Au+Au at similar N_{part} # Summary - \Box PHENIX has measured p_T spectra and nuclear modification factors for π^0 and η in Cu+Au collisions at 200 GeV - $\square R_{AA}$ factors for π^0 and η are consistent within uncertainties at all momenta and centralities - \Box In central and semi-central Cu+Au collisions production of π^0 and η is suppressed in the same way as in Au+Au and Cu+Cu at similar N_{part}: - ✓ the suppression level is dependent on overlap size, not on its geometry - ✓ a hint of enhancement is observed in peripheral Cu+Au collisions